177 research outputs found

    Analysis of the NGXO Telescope X-Ray Hartmann Data

    Get PDF
    Next Generation X-Ray Optics (NGXO) team at the Goddard Space Flight Center (GSFC) has been developing a new silicon-based grazing incidence mirror technology for future high resolution x-ray astronomical missions. Recently, the GSFC team completed the construction of first few mirror modules that contain one pair of mirrors. One of the mirror pairs was tested in GSFC 600-m long beamline facility and Panter (Neuried, Germay) 120-m long x-ray beamline facility. Both full aperture x-ray tests, Hartmann tests, and focal plane sweeps were completed. In this paper we present the data analysis process and compare the results from our models to measured x-ray centroid data, x-ray performance data, and out of focus images of the mirror pair

    Challenges of Early Years leadership preparation: a comparison between early and experienced Early Years practitioners in England

    Get PDF
    Leadership has been under-researched in the Early Years (EY) sector of primary schools in England, especially in leading change for professional development. The aim of this paper is to theorise what the leadership culture for EY practitioners looks like, and how Initial Teacher Training providers and schools are preparing practitioners for leadership. Using case studies of EY practitioners in different stages of their career in primary schools, we offer an insight into their preparedness for leadership in EY, the implication being that leadership training requires an understanding and embedding of the EY culture and context. Interviews with both sample groups allowed for deeper insight into the lived world. Interviews were also conducted with the head teachers to gain an overview of the leadership preparation they provided. The main findings suggest that newer EY practitioners are better prepared for leadership from their university training in comparison to more experienced EY practitioners

    Sigma-phase in Fe-Cr and Fe-V alloy systems and its physical properties

    Full text link
    A review is presented on physical properties of the sigma-phase in Fe-Cr and Fe-V alloy systems as revealed both with experimental -- mostly with the Mossbauer spectroscopy -- and theoretical methods. In particular, the following questions relevant to the issue have been addressed: identification of sigma and determination of its structural properties, kinetics of alpha-to-sigma and sigma-to-alpha phase transformations, Debye temperature and Fe-partial phonon density of states, Curie temperature and magnetization, hyperfine fields, isomer shifts and electric field gradients.Comment: 26 pages, 23 figures and 83 reference

    Novel, Real-Time Cell Analysis for Measuring Viral Cytopathogenesis and the Efficacy of Neutralizing Antibodies to the 2009 Influenza A (H1N1) Virus

    Get PDF
    A novel electronic cell sensor array technology, the real-time cell analysis (RTCA) system, was developed to monitor cell events. Unlike the conventional methods labeling the target cells with fluorescence, luminescence, or light absorption, the RTCA system allows for label-free detection of cell processes directly without the incorporation of labels. Here, we used this new format to measure the cytopathic effect (CPE) of the 2009 influenza A (H1N1) virus and the efficacy of neutralizing antibodies in human sera to this virus. The real-time dynamic monitoring of CPE was performed on MDCK cell cultures infected with the H1N1 virus, ranging from 5.50Γ—102 to 5.50Γ—107 copies/mL. The resulting CPE kinetic curves were automatically recorded and were both time and viral load dependent. The CPE kinetics were also distinguishable between different H1N1 stains, as the onset of CPE induced by the A/Shanghai/37T/2009 H1N1 virus was earlier than that of the A/Shanghai/143T/2009 H1N1 virus. Furthermore, inhibition of H1N1 virus-induced CPE in the presence of human specific anti-sera was detected and quantified using the RTCA system. Antibody titers determined using this new neutralization test correlated well with those obtained independently via the standard hemagglutination inhibition test. Taken together, this new CPE assay format provided label-free and high-throughput measurement of viral growth and the effect of neutralizing antibodies, illustrating its potential in influenza vaccine studies

    Land‐use intensity and biodiversity effects on infiltration capacity and hydraulic conductivity of grassland soils in southern Germany

    Get PDF
    Evidence from experimental and established grasslands indicates that plant biodiversity can modify the water cycle. One suspected mechanism behind this is a higher infiltration capacity (Ξ½B_{B}) and hydraulic conductivity (K) of the soil on species-rich grasslands. However, in established and agriculturally managed grasslands, biodiversity effects cannot be studied independent of land-use effects. Therefore, we investigated in established grassland systems how land-use intensity and associated biodiversity of plants and soil animals affect Ξ½B and K at and close to saturation. On 50 grassland plots along a land-use intensity gradient in the Biodiversity Exploratory SchwΓ€bische Alb, Germany, we measured Ξ½B with a hood infiltrometer at several matrix potentials and calculated the saturated and unsaturated K. We statistically analysed the relationship between Ξ½B_{B} or K and land-use information (e.g., fertilising intensity), abiotic (e.g., soil texture) and biotic data (e.g., plant species richness, earthworm abundance). Land-use intensity decreased and plant species richness increased Ξ½B_{B} and K, while the direction of the effects of soil animals was inconsistent. The effect of land-use intensity on Ξ½B_{B} and K was mainly attributable to its negative effect on plant species richness. Our results demonstrate that plant species richness was a better predictor of Ξ½B_{B} and K at and close to saturation than land-use intensity or soil physical properties in the established grassland systems of the SchwΓ€bische Alb

    Development of FRET Assay into Quantitative and High-throughput Screening Technology Platforms for Protein–Protein Interactions

    Get PDF
    FΓΆrster resonance energy transfer (FRET) technology has been widely used in biological and biomedical research and is a very powerful tool in elucidating protein interactions in many cellular processes. Ubiquitination and SUMOylation are multi-step cascade reactions, involving multiple enzymes and protein–protein interactions. Here we report the development of dissociation constant (Kd) determination for protein–protein interaction and cell-based high-throughput screening (HTS) assay in SUMOylation cascade using FRET technology. These developments are based on steady state and high efficiency of fluorescent energy transfer between CyPet and YPet fused with SUMO1 and Ubc9, respectively. The developments in theoretical and experimental procedures for protein interaction Kd determination and cell-based HTS provide novel tools in affinity measurement and protein interaction inhibitor screening. The Kd determined by FRET between SUMO1 and Ubc9 is compatible with those determined with other traditional approaches, such as isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR). The FRET-based HTS is pioneer in cell-based HTS. Both Kd determination and cell-based HTS, carried out in 384-well plate format, provide powerful tools for large-scale and high-throughput applications

    Impedance Responses Reveal Ξ²2-Adrenergic Receptor Signaling Pluridimensionality and Allow Classification of Ligands with Distinct Signaling Profiles

    Get PDF
    The discovery that drugs targeting a single G protein-coupled receptor (GPCR) can differentially modulate distinct subsets of the receptor signaling repertoire has created a challenge for drug discovery at these important therapeutic targets. Here, we demonstrate that a single label-free assay based on cellular impedance provides a real-time integration of multiple signaling events engaged upon GPCR activation. Stimulation of the Ξ²2-adrenergic receptor (Ξ²2AR) in living cells with the prototypical agonist isoproterenol generated a complex, multi-featured impedance response over time. Selective pharmacological inhibition of specific arms of the Ξ²2AR signaling network revealed the differential contribution of Gs-, Gi- and GΞ²Ξ³-dependent signaling events, including activation of the canonical cAMP and ERK1/2 pathways, to specific components of the impedance response. Further dissection revealed the essential role of intracellular Ca2+ in the impedance response and led to the discovery of a novel Ξ²2AR-promoted Ca2+ mobilization event. Recognizing that impedance responses provide an integrative assessment of ligand activity, we screened a collection of Ξ²-adrenergic ligands to determine if differences in the signaling repertoire engaged by compounds would lead to distinct impedance signatures. An unsupervised clustering analysis of the impedance responses revealed the existence of 5 distinct compound classes, revealing a richer signaling texture than previously recognized for this receptor. Taken together, these data indicate that the pluridimensionality of GPCR signaling can be captured using integrative approaches to provide a comprehensive readout of drug activity

    Toward Large-Area Sub-Arcsecond X-Ray Telescopes II

    Get PDF
    In order to advance significantly scientific objectives, future x-ray astronomy missions will likely call for x-ray telescopes with large aperture areas (approx. = 3 sq m) and fine angular resolution (approx. = 1"). Achieving such performance is programmatically and technologically challenging due to the mass and envelope constraints of space-borne telescopes and to the need for densely nested grazing-incidence optics. Such an x-ray telescope will require precision fabrication, alignment, mounting, and assembly of large areas (approx. = 600 sq m) of lightweight (approx. = 2 kg/sq m areal density) high-quality mirrors, at an acceptable cost (approx. = 1 M$/sq m of mirror surface area). This paper reviews relevant programmatic and technological issues, as well as possible approaches for addressing these issues-including direct fabrication of monocrystalline silicon mirrors, active (in-space adjustable) figure correction of replicated mirrors, static post-fabrication correction using ion implantation, differential erosion or deposition, and coating-stress manipulation of thin substrates

    Transcriptional Profiling of Human Brain Endothelial Cells Reveals Key Properties Crucial for Predictive In Vitro Blood-Brain Barrier Models

    Get PDF
    Brain microvascular endothelial cells (BEC) constitute the blood-brain barrier (BBB) which forms a dynamic interface between the blood and the central nervous system (CNS). This highly specialized interface restricts paracellular diffusion of fluids and solutes including chemicals, toxins and drugs from entering the brain. In this study we compared the transcriptome profiles of the human immortalized brain endothelial cell line hCMEC/D3 and human primary BEC. We identified transcriptional differences in immune response genes which are directly related to the immortalization procedure of the hCMEC/D3 cells. Interestingly, astrocytic co-culturing reduced cell adhesion and migration molecules in both BECs, which possibly could be related to regulation of immune surveillance of the CNS controlled by astrocytic cells within the neurovascular unit. By matching the transcriptome data from these two cell lines with published transcriptional data from freshly isolated mouse BECs, we discovered striking differences that could explain some of the limitations of using cultured BECs to study BBB properties. Key protein classes such as tight junction proteins, transporters and cell surface receptors show differing expression profiles. For example, the claudin-5, occludin and JAM2 expression is dramatically reduced in the two human BEC lines, which likely explains their low transcellular electric resistance and paracellular leakiness. In addition, the human BEC lines express low levels of unique brain endothelial transporters such as Glut1 and Pgp. Cell surface receptors such as LRP1, RAGE and the insulin receptor that are involved in receptor-mediated transport are also expressed at very low levels. Taken together, these data illustrate that BECs lose their unique protein expression pattern outside of their native environment and display a more generic endothelial cell phenotype. A collection of key genes that seems to be highly regulated by the local surroundings of BEC within the neurovascular unit are presented and discussed
    • …
    corecore